DSTI Plays Role in Astrophysics Research from South Pole

DSTI - Dynamic Sealing Technologies
Add to MyDirectIndustry favorites

DSTI partners with Harvard University, and delivers a 4-channel rotary union engineered to meet the very demanding application requirements at the South Pole research station.

MINNEAPOLIS, Minn. - June 29, 2016 - Most people are unaware that less than a quarter mile from the South Pole lie some of the world's most powerful radio telescopes.

Running year-round, they scan the sky observing very faint light from the Cosmic Microwave Background (CMB). The CMB is the oldest light visible in the Universe, a remnant glow from the very early times when the Universe was much hotter and much denser than it is today.

BICEP3, the 3rd generation in this series of instruments measuring the polarization of the CMB, requires rotary union technology to pass ultra-high purity helium gas from a compressor on the ground to a pulse-tube cryogenic cooler located above the telescope's rotating mount. Although the South Pole is bitterly cold, BICEP3 still needs to cool its detectors to a fraction of a degrees above absolute zero (-273° C / -460° F) to operate properly.

During the first season of BICEP3 operation at the Amundsen-Scott South Pole station, BICEP3 was using a basic 2-channel DSTI rotary union. Unfortunately, that particular rotary union was not quite adequate for the very demanding application of passing high pressure helium, a gas notoriously hard to keep leak-tight, through the continuously rotating union.

As a result, the rotary union displayed a high leak rate requiring constant bleeding of helium back into the system for replenishment. Despite being 99.999% pure, enough contamination accumulated in the pulse-tube cooler to cause performance degradation requiring additional processes to get the system back up and running resulting in a month of downtime.

Research Scientist Denis Barkats from Harvard University partnered with DSTI to solve this problem with an upgraded 4-channel DSTI rotary union. The 4-channel union significantly outperformed the 2-channel union by effectively using the outer two channels as buffers for the two inner working channels.

"DSTI was incredibly responsive when we communicated these problems with them and were able to deliver new rotary unions with spare units without delay which is critical when working in the short austral summer season at the South Pole station," says Denis Barkats.

About DSTI --

Dynamic Sealing Technologies, Inc. (DSTI) specializes in the design, manufacturing and integration of rotary union products worldwide. DSTI's products are used to distribute a variety of fluids from stationary inlets to rotating equipment. The company offers a full line of standard products for a wide variety of applications, as well as complete, specialized rotary union design and manufacturing services.

For more information, please call 763.786.3758 or email info@dsti.com, or visit www.dsti.com.

DSTI at Amundsen-Scott South Pole station
DSTI at Amundsen-Scott South Pole station

DSTI's GP series rotary union shown next to Amundsen-Scott South Pole research station.

Products associated

Associated Trend items

Related Searches