#Product Trends
What is a Servo Motor?
A servo motor is a rotational or translational motor that receives power from a servo amplifier and creates torque or force for a mechanical system, such as an actuator or brake.
Servo motors allow precise control of angular position, acceleration, and velocity. A closed-loop control system is employed with this type of motor. A closed-loop control system considers the current output and modifies it to achieve the desired condition. In these systems, the control action is based on the motor output.
Figure 1- Industrial Servo Motor
These motors are constructed for both constant and alternating currents. Since AC servo motors can withstand higher current surges, they are more commonly found in heavy industrial machinery. DC Servo Motors are best suited for smaller applications and have excellent control and feedback. The frequency of the applied voltage and the number of magnetic poles determine the speed of a servo motor.
Servo motors provide versatility in the manufacturing environment. Collaborative robotics, conveyor belts, automatic door openers, CNC turning, radar systems, tracking systems, and automation systems are all typical applications. It also requires a relatively sophisticated controller. The working principle of a servo motor and an electromagnetic motor is the same, except for differences in structure and function. A plastic gear is used in standard servo motors, whereas a metal gear is used in high-power servo motors.
Servo Motor Construction
The following figure shows the construction of a standard servo motor.
Figure 2- Servo Motor Construction
The servo motor is made up of two windings: stator and rotor. The stator winding is wound on the motor's stationary part, and this winding is also known as the motor's field winding. The rotor winding is wound on the rotating part of the motor, also known as the motor's armature winding. The motor has two bearings on the front and back sides to allow the shaft to move freely. The encoder includes an approximate sensor for determining the motor's rotational speed and revolutions per minute.
Servo motors are widely used in precision control projects in industrial automation. Previously, those who heard of servo motors imagined them only being used in special projects requiring precise torque, speed, and position control. However, its cost has decreased recently, making it an excellent alternative to drives with induction motors and hydraulic and pneumatic actuators.
Hydraulic and pneumatic systems continue to be less expensive than servo motors.
Nonetheless, we can already see servos replacing these in several applications, primarily hydraulic applications that require precision. In these cases, servos are an excellent alternative because they do not have the issues of oil leakage or soil pollution and have the advantage of being more straightforward and precise in actuation than hydraulic actuators.#servomotoranddrive #precisioncontrol #servo